Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Emerg Microbes Infect ; 12(2): 2225640, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-20244449

ABSTRACT

Although humoral responses elicited by infection or vaccine lost the ability to prevent transmission against Omicron, vaccine-induced antibodies may still contribute to disease attenuation through Fc-mediated effector functions. However, Fc effector function elicited by CoronaVac, as the most widely supplied inactivated vaccine globally, has not been characterized. For the first time, our study depicted Fc-mediated phagocytosis activity induced by CoronaVac, including antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent neutrophil phagocytosis (ADNP) activities, and further compared with that from convalescent individuals and CoronaVac recipients with subsequent breakthrough infections. We showed that 2-dose of CoronaVac effectively induced both ADCP and ADNP, but was substantially lower compared to infection, whereas the booster dose further augmented ADCP and ADNP responses, and remained detectable for 52 weeks. Among CoronaVac recipients, ADCP and ADNP responses also demonstrated cross-reactivity against Omicron subvariants, and breakthrough infection could enhance the phagocytic response. Meanwhile, serum samples from vaccinees, convalescent individuals with wildtype infection, BA.2 and BA.5 breakthrough infection demonstrated differential cross-reactive ADCP and ADNP responses against Omicron subvariants, suggesting the different subvariants of spike antigen exposure might alter the cross-reactivity of Fc effector function. Further, ADCP and ADNP responses were strongly correlated with Spike-specific IgG responses and neutralizing activities, indicating coordinated neutralization activity, ADCP and ADNP responses triggered by CoronaVac. Of note, the ADCP and ADNP responses were more durable and cross-reactive than corresponding Spike-specific IgG titers and neutralizing activities. Our study has important implications for optimal boosting vaccine strategies that may induce potent and broad Fc-mediated phagocytic activities.


Subject(s)
Antibodies, Viral , Phagocytosis , Humans , Breakthrough Infections , Vaccines, Inactivated , Immunoglobulin G , Antibodies, Neutralizing
2.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20243425

ABSTRACT

Antibody-dependent enhancement of infection (ADE) is clinically relevant to Dengue virus (DENV) infection and poses a major risk to the application of monoclonal antibody (mAb)-based therapeutics against related flaviviruses such as the Zika virus (ZIKV). Here, we tested a two-tier approach for selecting non-cross-reactive mAbs combined with modulating Fc glycosylation as a strategy to doubly secure the elimination of ADE while preserving Fc effector functions. To this end, we selected a ZIKV-specific mAb (ZV54) and generated three ZV54 variants using Chinese hamster ovary cells and wild-type (WT) and glycoengineered ΔXF Nicotiana benthamiana plants as production hosts (ZV54CHO, ZV54WT, and ZV54ΔXF). The three ZV54 variants shared an identical polypeptide backbone, but each exhibited a distinct Fc N-glycosylation profile. All three ZV54 variants showed similar neutralization potency against ZIKV but no ADE activity for DENV infection, validating the importance of selecting the virus/serotype-specific mAbs for avoiding ADE by related flaviviruses. For ZIKV infection, however, ZV54CHO and ZV54ΔXF showed significant ADE activity while ZV54WT completely forwent ADE, suggesting that Fc glycan modulation may yield mAb glycoforms that abrogate ADE even for homologous viruses. In contrast to the current strategies for Fc mutations that abrogate all effector functions along with ADE, our approach allowed the preservation of effector functions as all ZV54 glycovariants retained antibody-dependent cellular cytotoxicity (ADCC) against the ZIKV-infected cells. Furthermore, the ADE-free ZV54WT demonstrated in vivo efficacy in a ZIKV-infection mouse model. Collectively, our study provides further support for the hypothesis that antibody-viral surface antigen and Fc-mediated host cell interactions are both prerequisites for ADE, and that a dual-approach strategy, as shown herein, contributes to the development of highly safe and efficacious anti-ZIKV mAb therapeutics. Our findings may be impactful to other ADE-prone viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Cricetinae , Zika Virus/genetics , CHO Cells , Dengue Virus/genetics , Cricetulus , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/therapeutic use , Cross Reactions , Antibodies, Neutralizing/therapeutic use
3.
Cell Rep Med ; 4(1): 100910, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2165957

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.4 and BA.5 variants caused major waves of infections. Here, we assess the sensitivity of BA.4 to binding, neutralization, and antibody-dependent cellular cytotoxicity (ADCC) potential, measured by FcγRIIIa signaling, in convalescent donors infected with four previous variants of SARS-CoV-2, as well as in post-vaccination breakthrough infections (BTIs) caused by Delta or BA.1. We confirm that BA.4 shows high-level neutralization resistance regardless of the infecting variant. However, BTIs retain activity against BA.4, albeit at reduced titers. BA.4 sensitivity to ADCC is reduced compared with other variants but with smaller fold losses compared with neutralization and similar patterns of cross-reactivity. Overall, the high neutralization resistance of BA.4, even to antibodies from BA.1 infection, provides an immunological mechanism for the rapid spread of BA.4 immediately after a BA.1-dominated wave. Furthermore, although ADCC potential against BA.4 is reduced, residual activity may contribute to observed protection from severe disease.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , COVID-19 Serotherapy , SARS-CoV-2 , Humans , Antibodies , Breakthrough Infections , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology
4.
Cell Rep Med ; 4(1): 100893, 2023 01 17.
Article in English | MEDLINE | ID: covidwho-2165955

ABSTRACT

COVID-19 convalescent plasmas (CCPs) are chosen for plasma therapy based on neutralizing titers and anti-Spike immunoglobulin levels. However, CCP characteristics that promote SARS-CoV-2 control are complex and incompletely defined. Using an in vivo imaging approach, we demonstrate that CCPs with low neutralizing (ID50 ≤ 1:250), but moderate to high Fc-effector activity, in contrast to those with poor Fc function, delay mortality and/or improve survival of SARS-CoV-2-challenged K18-hACE2 mice. The impact of innate immune cells on CCP efficacy depended on their residual neutralizing activity. Fractionation of a selected CCP revealed that IgG and Ig(M + A) were required during therapy, but the IgG fraction alone sufficed during prophylaxis. Finally, despite reduced neutralization, ancestral SARS-CoV-2-elicited CCPs significantly delayed Delta and Beta-induced mortality suggesting that Fc-effector functions contribute to immunity against VOCs. Thus, Fc activity of CCPs provide a second line of defense when neutralization is compromised and can serve as an important criterion for CCP selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/therapy , COVID-19 Serotherapy , Treatment Outcome , Immunoglobulin G
5.
Cell Rep Med ; 3(11): 100811, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2150820

ABSTRACT

Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP), a passive polyclonal antibody therapeutic agent, has had mixed clinical results. Although antibody neutralization is the predominant approach to benchmarking CCP efficacy, CCP may also influence the evolution of the endogenous antibody response. Using systems serology to comprehensively profile severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) functional antibodies of hospitalized people with COVID-19 enrolled in a randomized controlled trial of CCP (ClinicalTrials.gov: NCT04397757), we find that the clinical benefits of CCP are associated with a shift toward reduced inflammatory Spike (S) responses and enhanced nucleocapsid (N) humoral responses. We find that CCP has the greatest clinical benefit in participants with low pre-existing anti-SARS-CoV-2 antibody function and that CCP-induced immunomodulatory Fc glycan profiles and N immunodominant profiles persist for at least 2 months. We highlight a potential mechanism of action of CCP associated with durable immunomodulation, outline optimal patient characteristics for CCP treatment, and provide guidance for development of a different class of COVID-19 hyperinflammation-targeting antibody therapeutic agents.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Immunization, Passive/methods , Antibodies, Viral/therapeutic use , Nucleocapsid , COVID-19 Serotherapy
6.
Cell Rep ; 41(4): 111544, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2104501

ABSTRACT

Each severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant renews concerns about decreased vaccine neutralization weakening efficacy. However, while prevention of infection varies, protection from disease remains and implicates immunity beyond neutralization in vaccine efficacy. Polyclonal antibodies function through Fab domains that neutralize virus and Fc domains that induce non-neutralizing responses via engagement of Fc receptors on immune cells. To understand how vaccines promote protection, we leverage sera from 51 SARS-CoV-2 uninfected individuals after two doses of the BNT162b2 mRNA vaccine. We show that neutralizing activities against clinical isolates of wild-type and five SARS-CoV-2 variants, including Omicron BA.2, link to FcγRIIIa/CD16 non-neutralizing effector functions. This is associated with post-translational afucosylation and sialylation of vaccine-specific antibodies. Further, polyfunctional neutralizing and non-neutralizing breadth, magnitude, and coordination diminish with age. Thus, studying Fc functions in addition to Fab-mediated neutralization provides greater insight into vaccine efficacy for vulnerable populations, such as the elderly, against SARS-CoV-2 and novel variants.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Aged , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , Receptors, Fc , Antibodies, Neutralizing
7.
Immunol Rev ; 310(1): 6-26, 2022 09.
Article in English | MEDLINE | ID: covidwho-1879045

ABSTRACT

Antibodies against epitopes in S1 give the most accurate CoP against infection by the SARS-CoV-2 coronavirus. Measurement of those antibodies by neutralization or binding assays both have predictive value, with binding antibody titers giving the highest statistical correlation. However, the protective functions of antibodies are multiple. Antibodies with multiple functions other than neutralization influence efficacy. The role of cellular responses can be discerned with respect to CD4+ T cells and their augmentation of antibodies, and with respect to CD8+ cells with regard to control of viral replication, particularly in the presence of insufficient antibody. More information is needed on mucosal responses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Epitopes/immunology , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
Front Immunol ; 13: 873191, 2022.
Article in English | MEDLINE | ID: covidwho-1825483

ABSTRACT

Influenza virus hemagglutinin (HA) stalk-specific antibodies have been shown to potently induce Fc-mediated effector functions which are important in protection from disease. In placebo-controlled maternal influenza (MatFlu) vaccination trials of pregnant women living with or without HIV, reduced risk of influenza illness was associated with high HA stalk antibody titers following trivalent inactivated vaccination (TIV). However, the mechanisms of immunity conferred by the HA stalk antibodies were not well understood. Here, we investigated HA stalk-specific Fc effector functions including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent complement deposition (ADCD), and FcγRIIa and FcγRIIIa binding in response to seasonal influenza vaccination. These were measured pre- and 1-month post-vaccination in 141 HIV-uninfected women (67 TIV and 74 placebo recipients) and 119 women living with HIV (WLWH; 66 TIV and 53 placebo recipients). In contrast to HIV-uninfected women, where HA stalk-specific ADCP and FcγRIIa binding were significantly boosted, WLWH showed no increase in response to vaccination. HA stalk-specific ADCC potential and FcγRIIIa binding were not boosted regardless of HIV status but were higher in WLWH compared with HIV-uninfected women prior to vaccination. HA stalk-specific ADCD was significantly increased by vaccination in all women, but was significantly lower in the WLWH both pre- and post- vaccination. Co-ordination between HA stalk-specific ADCP and ADCD in WLWH was improved by vaccination. Fc polyfunctionality was enhanced by vaccination in HIV-uninfected women and driven by the HA stalk antibody titers. However, in the WLWH, higher pre-vaccination Fc polyfunctionality was maintained post-vaccination but was decoupled from titer. Overall, we showed differential regulation of Fc effector HA stalk responses, suggesting that HIV infection results in unique humoral immunity in response to influenza vaccination, with relevance for future strategies that aim to target the HA stalk in this population.


Subject(s)
HIV Infections , Influenza, Human , Antibodies, Viral , Female , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza, Human/prevention & control , Male , Pregnancy , Vaccination
9.
Front Immunol ; 13: 796481, 2022.
Article in English | MEDLINE | ID: covidwho-1765667

ABSTRACT

The coronavirus disease 2019 (COVID19) pandemic has left researchers scrambling to identify the humoral immune correlates of protection from COVID-19. To date, the antibody mediated correlates of virus neutralization have been extensively studied. However, the extent that non-neutralizing functions contribute to anti-viral responses are ill defined. In this study, we profiled the anti-spike antibody subtype/subclass responses, along with neutralization and antibody-dependent natural killer cell functions in 83 blood samples collected between 4 and 201 days post-symptoms onset from a cohort of COVID-19 outpatients. We observed heterogeneous humoral responses against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Overall, anti-spike profiles were characterized by a rapid rise of IgA and sustained IgG titers. In addition, strong antibody-mediated natural killer effector responses correlated with milder disease and being female. While higher neutralization profiles were observed in males along with increased severity. These results give an insight into the underlying function of antibodies beyond neutralization and suggest that antibody-mediated natural killer cell activity is a key function of the humoral response against the SARS-CoV-2 spike protein.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Convalescence , Killer Cells, Natural/immunology , Outpatients , SARS-CoV-2/immunology , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Female , HEK293 Cells , Humans , Male , Middle Aged , SARS-CoV-2/metabolism
10.
Cell Rep ; 38(7): 110368, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1649284

ABSTRACT

Emerging evidence indicates that both neutralizing and Fc-mediated effector functions of antibodies contribute to protection against SARS-CoV-2. It is unclear whether Fc-effector functions alone can protect against SARS-CoV-2. Here, we isolated CV3-13, a non-neutralizing antibody, from a convalescent individual with potent Fc-mediated effector functions. The cryoelectron microscopy structure of CV3-13 in complex with the SARS-CoV-2 spike reveals that the antibody binds from a distinct angle of approach to an N-terminal domain (NTD) epitope that only partially overlaps with the NTD supersite recognized by neutralizing antibodies. CV3-13 does not alter the replication dynamics of SARS-CoV-2 in K18-hACE2 mice, but its Fc-enhanced version significantly delays virus spread, neuroinvasion, and death in prophylactic settings. Interestingly, the combination of Fc-enhanced non-neutralizing CV3-13 with Fc-compromised neutralizing CV3-25 completely protects mice from lethal SARS-CoV-2 infection. Altogether, our data demonstrate that efficient Fc-mediated effector functions can potently contribute to the in vivo efficacy of anti-SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , COVID-19/therapy , Animals , Antibodies, Viral/chemistry , Antibody-Dependent Cell Cytotoxicity , COVID-19/mortality , COVID-19/prevention & control , COVID-19/transmission , Disease Models, Animal , Epitopes , Humans , Immunization, Passive/mortality , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Mice , Protein Binding , Protein Conformation , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
11.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1636907

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Fc Fragments/immunology , SARS-CoV-2/immunology , Ad26COVS1/immunology , Ad26COVS1/therapeutic use , Adult , Aged , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Cross Reactions , Female , HEK293 Cells , Humans , Jurkat Cells , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Treatment Outcome , Vaccination/methods
12.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1611777

ABSTRACT

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/immunology , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Fc/metabolism , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
13.
Med (N Y) ; 2(12): 1327-1341.e4, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1568933

ABSTRACT

BACKGROUND: Although vaccines effectively prevent coronavirus disease 2019 (COVID-19) in healthy individuals, they appear to be less immunogenic in individuals with chronic inflammatory disease (CID) or receiving chronic immunosuppression therapy. METHODS: Here we assessed a cohort of 77 individuals with CID treated as monotherapy with chronic immunosuppressive drugs for antibody responses in serum against historical and variant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses after immunization with the BNT162b2 mRNA vaccine. FINDINGS: Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with tumor necrosis factor alpha (TNF-α) inhibitors (TNFi), and this pattern appeared to be worse against the B.1.617.2 delta virus. Within 5 months of vaccination, serum neutralizing titers of all TNFi-treated individuals tested fell below the presumed threshold correlate for antibody-mediated protection. However, TNFi-treated individuals receiving a third mRNA vaccine dose boosted their serum neutralizing antibody titers by more than 16-fold. CONCLUSIONS: Vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) will likely be required to prevent SARS-CoV-2 infection in this susceptible population. FUNDING: This study was supported by grants and contracts from the NIH (R01 AI157155, R01AI151178, and HHSN75N93019C00074; NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contracts HHSN272201400008C and 75N93021C00014; and Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051).


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines/therapeutic use , Hepatitis Delta Virus , Humans , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha , Vaccines, Synthetic , mRNA Vaccines
14.
Hum Vaccin Immunother ; 17(12): 5532-5545, 2021 Dec 02.
Article in English | MEDLINE | ID: covidwho-1541481

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic highlights the urgent clinical need for efficient virus therapies and vaccines. Although the functional importance of antibodies is indisputable in viral infections, there are still significant unmet needs that require vast improvements in antibody-based therapeutics. The IgG Fc domain can be engineered to produce antibodies with tailored and potent responses that will meet these clinical demands. Engaging Fc receptors (FcRs) to perform effector functions as cytotoxicity, phagocytosis, complement activation, intracellular neutralization and controlling antibody persistence. Furthermore, it produces vaccine-like effects by activating signals to stimulate T-cell responses, have proven to be required for protection, as neutralization alone does not off the full protection capacity of antibodies. This review highlights antiviral Fc functions and FcRs' contributions in linking innate and adaptive immunity against viral threats. Moreover, it provides the latest Fc engineering strategies to improve the safety and efficacy of human antiviral antibodies and vaccines.


Subject(s)
COVID-19 , Vaccines , Antibodies, Neutralizing , Antibody Formation , Antibody-Dependent Cell Cytotoxicity , Antiviral Agents , COVID-19/prevention & control , Humans , Immunoglobulin Fc Fragments , SARS-CoV-2
15.
Cell Host Microbe ; 29(11): 1611-1619.e5, 2021 11 10.
Article in English | MEDLINE | ID: covidwho-1466221

ABSTRACT

The Johnson and Johnson Ad26.COV2.S single-dose vaccine represents an attractive option for coronavirus disease 2019 (COVID-19) vaccination in countries with limited resources. We examined the effect of prior infection with different SARS-CoV-2 variants on Ad26.COV2.S immunogenicity. We compared participants who were SARS-CoV-2 naive with those either infected with the ancestral D614G virus or infected in the second wave when Beta predominated. Prior infection significantly boosts spike-binding antibodies, antibody-dependent cellular cytotoxicity, and neutralizing antibodies against D614G, Beta, and Delta; however, neutralization cross-reactivity varied by wave. Robust CD4 and CD8 T cell responses are induced after vaccination, regardless of prior infection. T cell recognition of variants is largely preserved, apart from some reduction in CD8 recognition of Delta. Thus, Ad26.COV2.S vaccination after infection could result in enhanced protection against COVID-19. The impact of the infecting variant on neutralization breadth after vaccination has implications for the design of second-generation vaccines based on variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Ad26COVS1 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , T-Lymphocytes/immunology
16.
Immunity ; 54(9): 2143-2158.e15, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1364125

ABSTRACT

Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Brain/pathology , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Testis/pathology , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Brain/virology , COVID-19/therapy , Cells, Cultured , Disease Models, Animal , Humans , Immunoglobulin Fc Fragments/genetics , Luciferases/genetics , Luminescent Measurements , Lung/virology , Male , Mice , Mice, Transgenic , Testis/virology
17.
Expert Opin Ther Targets ; 25(6): 467-477, 2021 06.
Article in English | MEDLINE | ID: covidwho-1145996

ABSTRACT

INTRODUCTION: Antibodies mediate pathogen neutralization in addition to several cytotoxic Fc functions through engaging cellular receptors and recruiting effector cells. Fc effector functions have been well described in disease control and protection against infectious diseases including HIV, Ebola, malaria, influenza and tuberculosis, making them attractive targets for vaccine design. AREAS COVERED: We briefly summarize the role of Fc effector functions in disease control and protection in viral, bacterial and parasitic infectious diseases. We review Fc effector function in passive immunization and vaccination, and primarily focus on strategies to elicit and modulate these functions as part of a robust vaccine strategy. EXPERT OPINION: Despite their known correlation with vaccine efficacy for several diseases, only recently have seminal studies addressed how these Fc effector functions can be elicited and modulated in vaccination. However, gaps remain in assay standardization and the precise mechanisms of diverse functional assays. Furthermore, there are inherent difficulties in the translation of findings from animal models to humans, given the difference in sequence, expression and function of Fc receptors and Fc portions of antibodies. However, overall it is clear that vaccine development to elicit Fc effector function is an important goal for optimal prevention against infectious disease.


Subject(s)
Antibodies, Neutralizing/immunology , Receptors, Fc/physiology , Viral Vaccines/chemical synthesis , Animals , Humans , Receptors, Fc/immunology , Viral Vaccines/immunology
18.
Cell Rep Med ; 2(7): 100329, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1272778

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with a wide spectrum of disease presentation, ranging from asymptomatic infection to acute respiratory distress syndrome (ARDS). Paradoxically, a direct relationship has been suggested between COVID-19 disease severity and the levels of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies, including virus-neutralizing titers. A serological analysis of 536 convalescent healthcare workers reveals that SARS-CoV-2-specific and virus-neutralizing antibody levels are elevated in individuals that experience severe disease. The severity-associated increase in SARS-CoV-2-specific antibody is dominated by immunoglobulin G (IgG), with an IgG subclass ratio skewed toward elevated receptor binding domain (RBD)- and S1-specific IgG3. In addition, individuals that experience severe disease show elevated SARS-CoV-2-specific antibody binding to the inflammatory receptor FcÉ£RIIIa. Based on these correlational studies, we propose that spike-specific IgG subclass utilization may contribute to COVID-19 disease severity through potent Fc-mediated effector functions. These results may have significant implications for SARS-CoV-2 vaccine design and convalescent plasma therapy.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , Adult , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index
19.
Viruses ; 13(6)2021 05 31.
Article in English | MEDLINE | ID: covidwho-1256669

ABSTRACT

Identification of therapeutics against emerging and re-emerging viruses remains a continued priority that is only reinforced by the recent SARS-CoV-2 pandemic. Advances in monoclonal antibody (mAb) isolation, characterization, and production make it a viable option for rapid treatment development. While mAbs are traditionally screened and selected based on potency of neutralization in vitro, it is clear that additional factors contribute to the in vivo efficacy of a mAb beyond viral neutralization. These factors include interactions with Fc receptors (FcRs) and complement that can enhance neutralization, clearance of infected cells, opsonization of virions, and modulation of the innate and adaptive immune response. In this review, we discuss recent studies, primarily using mouse models, that identified a role for Fc-FcγR interactions for optimal antibody-based protection against emerging and re-emerging virus infections.


Subject(s)
Communicable Diseases, Emerging/immunology , Immunoglobulin Fc Fragments/immunology , Receptors, IgG/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibody-Dependent Cell Cytotoxicity , Communicable Diseases, Emerging/therapy , Communicable Diseases, Emerging/virology , Humans , Immunization, Passive , Phagocytosis , Virus Diseases/therapy , Virus Diseases/virology , Viruses/classification
20.
Cell Rep Med ; 2(6): 100313, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1240648

ABSTRACT

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/immunology , Immunoglobulin Fc Fragments/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Cross Reactions/immunology , Epitope Mapping , Female , Humans , Immunoglobulin Fc Fragments/immunology , Mice , Mice, Inbred BALB C , Phagocytosis , Protein Subunits/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL